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Abstract
Nowadays, internet attacks have increased manifold. As the propagation speed of attacks has increased
significantly, waiting for the attacks to happen and look for the diagnosis later on is of no use. Thus a
proactive technique for countering attacks called NIPS comes into play. These prevention system can be
implemented in both kernel and user space. The performance of kernel space implementations are always
better as compared to user space implementations as it comes to processing the packets at higher rate because
in user space these systems cannot keep up with speed of the network and starts dropping the packets. On the
other hand the effects of system fault in kernel space are much more serious than in user space and thus user
space implementation is much more robust. The performance of user space NIPS can be improved by
providing a network stack in the user space itself which can overcome the factors responsible for reduced
performance of these systems.
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I. INTRODUCTION
A firewall is considered as first line of defense in protecting private information. It is set of filters or
rules that are matched against traffic. It can try to detect malicious traffic that tries to enter a computer system
but cannot detect anything that has already entered the computer system. For greater security IDS and IPS
should be used along the firewall.

IDS (Intrusion Detection System) [1] is considered as passive monitoring system since it just warns
you of the suspicious activity taking place. IDS monitors only the copy of the traffic but the problem arises
when the real malicious packets have already passed to their intended target. An IPS (Intrusion Prevention
System) has all the features of a good IDS but it can also stop malicious traffic from entering the computer
system. Unlike IDS, an IPS [2] monitors the real traffic and drops any malicious packets sent over the wire. It
can:

[1] Stop the attack by terminating the network connection or user session which is originating the attack.
[2] Blocking access to the target from the user account, IP address, or by blocking all access to the targeted
host, service, or application.

In spite of the above advantages that an IPS offers, there are risks associated with it more than that of
IDS. The IPS monitors live traffic passing through it. So if IPS fails, or becomes overwhelmed, it will affect
your live traffic. Hence IPS influences the network performance as each packet is analyzed in terms of
malicious content before being routed to the intended destination. An IPS can be realized in either kernel or
user space [3]. Each user space process is regularly interrupted in order to allow pre-emptive multitasking.
This is not the case in kernel processes. Further, transferring data from kernel space to user space often
requires a set of copy operations which further reduces the execution performance. Efficiency is not the only
aspect to be considered in the design, but appropriate attention needs also to be paid to security and robustness.
The fact that code which is executed in kernel space cannot be restricted or supervised strongly demands for
execution in user space. Process that run in user space can be supervised and restricted.
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Finally, regarding robustness, the effects of a system-fault in kernel space are much more serious than
in user-space, a fact that also strongly demands for user space implementation of intrusion prevention modules.
Thus we are implementing a user space network stack in Linux which will act as a support for the execution of
an IPS.

1. MOTIVATION

In our modern network world, the software, protocols and algorithms involved in communication are
among some of the critical parts of the operating system. The core communication software in most modern
systems is the network stack. There are many overheads in packet processing [4] which results in reduced
performance of network stack. So, we need a design which is capable of handling these overheads so that the
network stack can work efficiently. The current implementation lacks adaptability and interaction with the
applications. Implementing the network stack in user space provides us the opportunities to make
modifications in the current implementations so that it can overcome the problems of current implementations.
The main components of our user level implementation are as follows:

. Device driver: We need a specialized device driver which can prove us direct NIC access.

. Memory Pool: Pre-allocated memory area divide into 2000 bytes chunks to facilitate faster allocation and
de-allocation of memory for outgoing and incoming packets.

. User level network stack: This is the core of our project which will provide us better performance and
flexibility in designing and development.

I1l. RELATED WORK
Various works have been done earlier in user space regarding implementations of network stack.

3.1 Daytona

There are several overheads in the networking stack due to which desirable performance cannot be
achieved in higher rate of traffic. Monitoring and profiling of the TCP stack can reveal sources of such
overheads. However this becomes a challenge when the TCP implementation resides in the kernel. User Level
TCP stack can help us address these diverse challenges. Daytona [5] is a user level TCP implementation, a
library available to Linux applications, which works with any network interface and get the same network
functionality as provided by the kernel and is also largely independent on kernel version. The kernel is just a
communication channel between the library and the network, through the use of raw IP sockets.

3.2 Arsenic

Arsenic [6] was a Linux 2.3.29-based user level TCP implementation. The goal of this
implementation was to give user level applications better control for managing bandwidth on a network
interface. This implementation was designed to work with a specialized gigabit network interface which
provided per connection contexts in interface hardware. Its goal was to extract the best performance and QoS
functionality from a specialized network interface. Arsenic’s design thus involves a coupling with the interface
hardware, and a dependence on the kernel version. Providing zero-copy transfers and connection-specific
buffers was a key goal of the project. In contrast to Daytona, our network stack tries to implement zero-copy
mechanism [7] where only one copy of the packet is stored in our memory pool and the reference is passed to
the protocol layers above the stack. Our implementation works specifically on Ethernet interface because we
are getting NIC access from Pfring module which works only for Ethernet interface.

3.3 Fidran and Mipsa

Fidran [3] is a flexible intrusion prevention system for active networks which analyses packets in
kernel space. Although it is possible to install user-space modules, a part of the packet processing always takes
place in the kernel. Another prototype of an IPS, a modular intrusion prevention system MIPSA [3], which
runs completely in user space and is designed to cooperate with active networking environment AMnet. As
compared to the kernel space implementation of IPS which required copy operations from kernel space to user
space which slows down the execution. In user space implementation of the network stack, both IPS and the
memory pool exist in user space itself which will ease the performance a little since there will be no switching
from kernel to user space.
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1IV. ARCHITECTURAL DESIGN

The overall architecture of our approach represents the hardware components, software components
and the relationship between them. Lower level design: At lower level we are mainly having the following
components - NIC, drivers, and ring buffers. NIC's main task is to receive and transmit the packets to physical
network. When it receives the packet it copies it to the ring buffer [8]. In our case the ring buffers is the
memory pool in user space and its main task is to hold the packets until they are used by either network stack
or NIC. The NIC also informs the device driver about the availability of packets so that the further processing
can be performed. Upper level design: At the middle, are our network protocols implemented in the network
stack. The network stack completely functions in user space. Its main task is to read to write the packets from
memory pool and process them. The processed packets are then given to the intended application using socket
interface.
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Fig. 1 User Space network stack and its relation with NIC.

The following steps take place in above figure:

. As the network packet arrives at NIC during reception, the installed Pfring module directly stores the
packet in our memory pool.

. The multiple threads present at the Ethernet layer fetch the reference of the packets from their stored
location in memaory pool.

. While one of the threads process a packet at Ethernet layer and passes it to the layer above, another
threads continuously fetches packets coming at NIC from the memory pool.

. The thread then passes the processed packet (removing headers) from one layer to the layer above of our

TCP/IP stack and the same functionality is carried up the stack till the transport layer and finally to the
application layer.Threads from different layers communicate through queues present between two
adjacent layers.

V. IMPLEMENTATION DETAILS
The intent of this section is to describe the code structure that implements the various pieces of our
user space network stack. Our implementation is best suited for Linux kernel version 2.6 and above.

5.1 Lower Level Processing

At the lower level i.e. the Ethernet layer of our TCP/IP stack, fetching the “up” interfaces takes place
and continuous listening is done on those interfaces for availability of packets. Packets which arrive at the NIC
are handled and stored in our memory pool of the modified skbuff structure or Packet Headers (Fig. 1). This
user space memory pool performs same function as skbuff pool in kernel space.The packet header is then
analysed to see whether the packet has to be passed to ARP or IP and then stored in the queue above
respectively.

5.2 Protocol Processing at Network Layer

After the packet arrives in network layer, the packet header is checked to see if its IP address matches
with the Local IP address and decide whether to forward the packet or send to local network. If there is any
problem with any of the fields in packet header then error message is to be sent through ICMP.If the packet at
network layer is being handled by IP, then respective options processing, defragmentation (During reception)
and fragmentation (During transmission) takes place if needed. If the packet is being handled by ARP during
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transmission then first a ARP cache lookup is performed to check for the entry of particular IP address and
MAC address is obtained from cache itself else ARP resolution takes place.From the IP layer the packet is then
sent to the queue above for processing in the transport layer or ICMP.

5.3 Protocol Processing at the Transport layer

In UDP, again the same functionality is carried on like IP i.e. validating the packet headers and
sending it to the layer above which is the socket layer and then eventually to the application for which it is
destined.Apart from above functionality, we have maintained a linked list for all the “up” interfaces at the
lower level and a linked list for protocol at the transport layer. A hash function is applied to the protocol field
in the packet during reception. This obtained hash value is matched against position in the linked list and if no
match is found then the protocol is added at the end of the linked list. By this way, we can dynamically add
protocols to the list.

V1. CONCLUSION

Intrusion Prevention is a vital dose for rapidly increasing internet attacks. Along with efficiency,
appropriate attention needs to be paid on robustness of the system. Since IPS will perform at the user level
where our network stack exists, there will be no overhead of copy operations from kernel to user space or vice
versa. Our network stack which is already overcoming overheads of the kernel network stack will act as a
support for IPS execution.
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